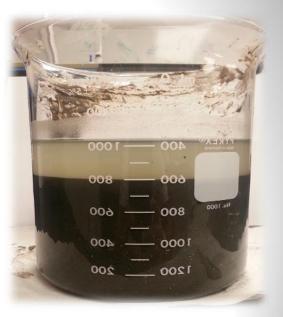
Removal of Nutrients from IRL Dredged Muck Residuals Utilizing High-Valence Iron (FeO ²⁻) Technology

-An Estuary in Peril-

T.D. Waite PhD PE

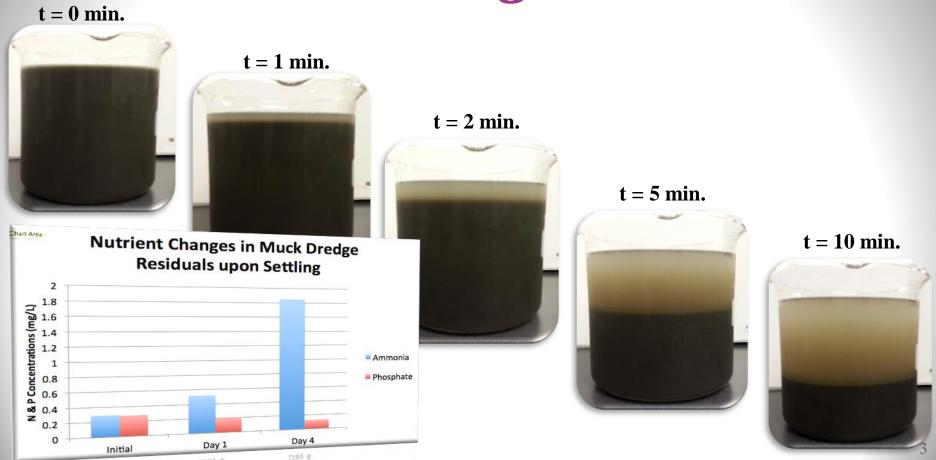
President & Founder

August 10, 2021


IRL National Estuaries Program

Muck vs. "Dredged Muck"

Muck Sediment



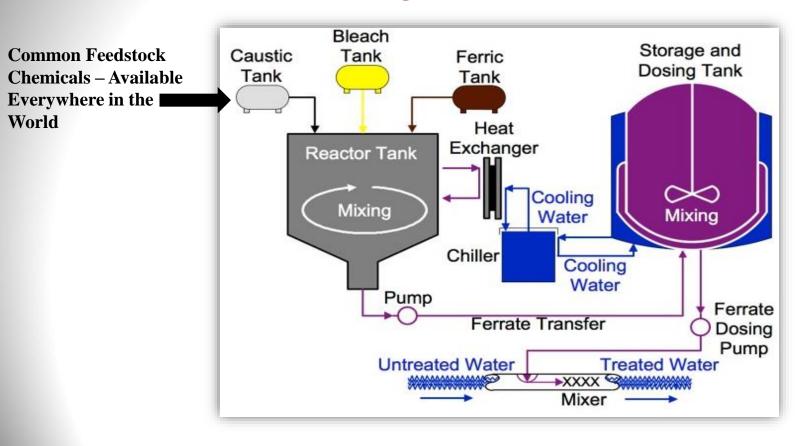
Settled Dredged Muck

Dredged Muck

-Muck Settling Kinetics-

What is Ferrate(VI) (FeO₄)²⁻?

- Oxyanion of iron in +6 oxidation state better known as Ferrate(VI).
- More powerful than ozone, chlorine dioxide, hydrogen peroxide, permanganate, hypochlorite, and chlorine.
- Multiple effects from a single dose. As Ferrate(IV) reacts to form <u>ferric</u> hydroxide (Fe³⁺), it accomplishes superior oxidation, disinfection, coagulation, precipitation, dewatering, and deodorization.
- Easy to synthesize, but difficult (expensive) to purify and stabilize long enough to be a "commercial" chemical.


Synthesis of FeO₄²⁻ is Now Simple ...

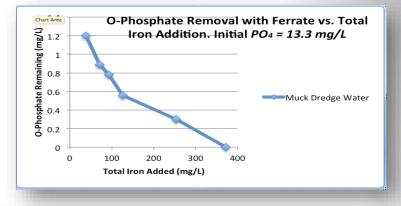
<u>Iron + Bleach + Caustic --> Ferrate +</u> <u>Salt +Water</u>

 $2FeCl_3 + 3NaOCl + 10NaOH = 2Na_2FeO_4 + 9NaCl + 5H_2O$

Ferrate Synthesis Process

Typical Process Skid

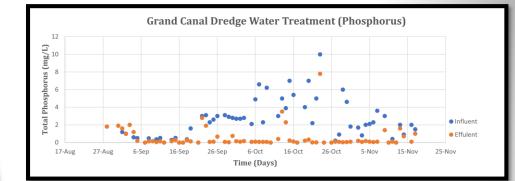
ate TR d but Synthesizer can make 150 GPH Ferrate solution - Treat 60 MGD @ 1 mg/L dose Currently operating at muck dredging site (4,000 GPM), Florida

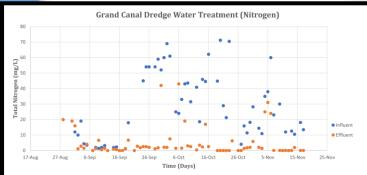

Reaction of FeO₄²⁻ with Water

 $\begin{array}{cccc} (OH)^*FeO_4{}^{2-} + H_2O \implies FeO_4{}^{3-} + FeO_3{}^{2-} \implies Fe(OH)_3 \\ Fe^6 & Fe^5 & Fe^4 & Fe^3 \end{array}$

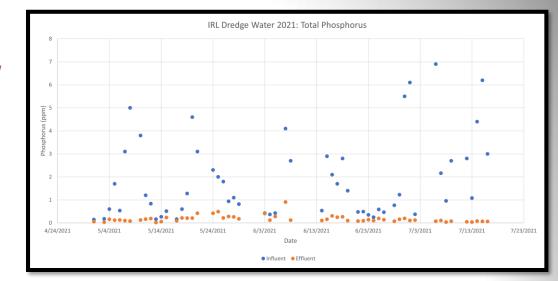
Disinfection + Oxidation Coagulation

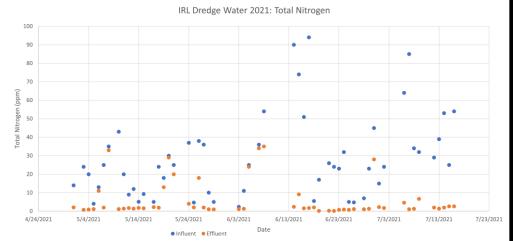
-Demonstrate Unique Chemistry-

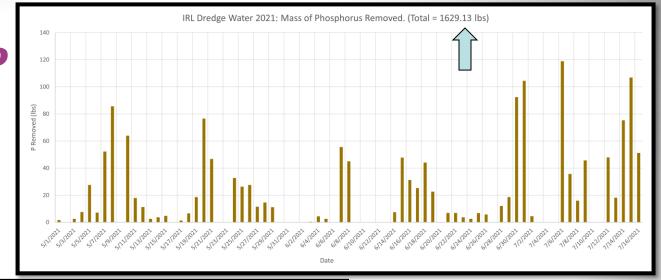

Studies in FIT laboratories using this chemistry to treat dredge spoil water have shown very high treatment efficiencies for nutrient & contaminant removal from dredge water.

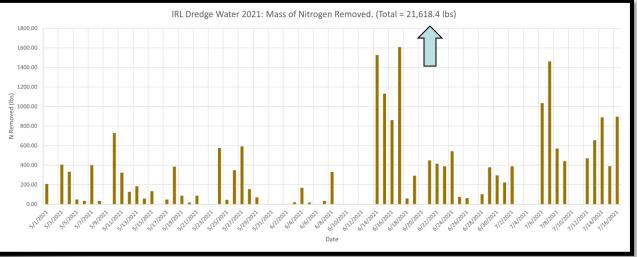

Muck	pH	NH ₄ -N	NO ₂ -N	NO ₃ -N	PO ₄ -P	TSS	Total N+P	Total N+P+TSS
Dredge Water		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	N+P	N+P+155
Control	7.5	2.03	0.03	0.36	1.2	185.4		
Treated	7.0	0.16	0.006	0.35	0.4	8.5		
Chemical Cost (\$/lb.)		\$30.00			\$69.0	\$0.3	\$21.0	\$0.3

Currently Operating in IRL






N & P in Dredge Water Before and After Treatment with Ferrate


-Recent Data-

Mass of N & P Removed in 2.5 Months

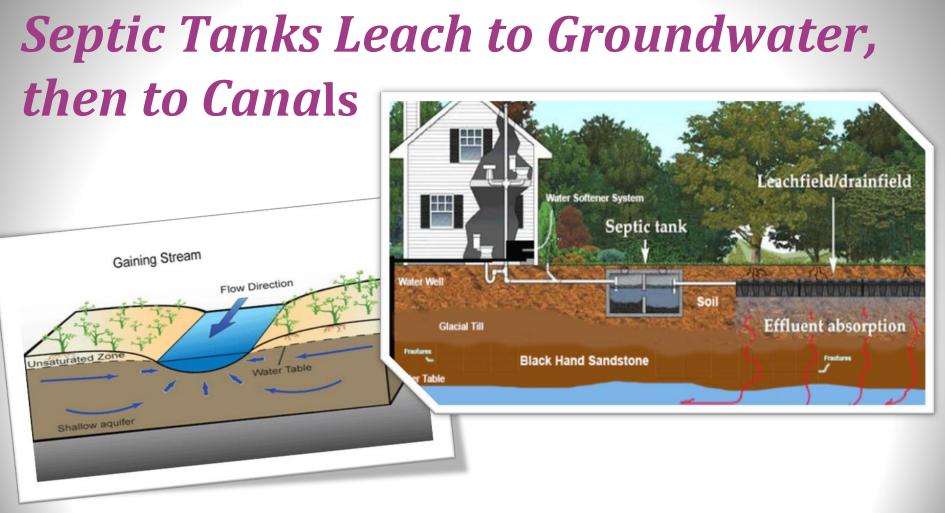
Speaking of Nutrient Removal

Table 1 - Amounts and Costs (\$/lb) of Nutrients (N & P) Removed from the Indian River Lagoon Environment by Different Approaches. (*From: The Save the Lagoon Plan, prepared by Tetra Tech Inc. & CloseWaters LLC, for Brevard County, FL*)

Plan Activity	Pounds of <u>P</u> Removed / yr	Removal Cost \$/Pound P	Pounds of <u>N</u> Removed / yr	Removal Cost \$/Pound N
Fertilizer Management & Public Ed.	813	\$769	6,123	\$102
Muck Removal			491,300	\$401
Stormwater Management Projects	17,026	\$612	118,440	\$88
Constructed Oyster Reef & Living Shores	7,181	\$1,393	21,120	\$473
Sewage Trt Plant Upgrades			40,778	\$214
Septic Tank Removals			56,509	\$852
Septic Tank Upgrades			27,659	\$802

What-Where-why-How Much ??


Impacts of Environmental Muck Dredging at Florida Institute of Technology 2017-2018, Final Report, December 2019


Mean annual inputs of total N and P (2016, 2017) from the four major tributaries were within 25% of estimated benthic fluxes of N (300 tons) and P (45 tons) from muck sediments in the North IRL (north of Melbourne Causeway, State Road 192). Very high PO4³⁻ fluxes, concurrent with low N+N and NH_4^+ fluxes, were observed in the St. Sebastian River (South Prong) during large rain events when pH was < 7; this observation is likely due to remobilization of phosphate minerals. In most cases, >70% of the TN and TP were delivered to the IRL during above-median flow that occurred on ~120 days per year. These results confirm the importance of continuing a fertilizer ban during the June Table ES1. Fluxes of total nitrogen (N) and total phosphorus (P) from major tributaries of the Indian River Lagoon. improve estimates of 1

ontinuous water flow

Tributory	Total N (tons/y)		Total P (tons/y)		Mean Flow (CFS)		Drainage
Tributary	2016	2017	2016	2017	2016	2017	Area (km ²)
Eau Gallie River (EG)	10	14	2.5	3.7	11	17	24
Crane Creek (CC)	24	27	3.4	3.8	32	35	48
Turkey Creek (TC)	164	162	11	11	211	210	254
	108	184	19	57	111	165	91
St. Sebastian River So. Prong (SR)		387	36	76	365	427	417
Total	306	387	50	10			
				10		427	417

Nutrients & Contaminates are Concentrated in the STR Event up to 10X, but low Concentrations are Present in Dry-Weather flow.

Removal of Nutrients and SS from Canals During Storm Events to Prevent Muck Formation in the IRL

Sludge from Ferrate Treated Muck Dredge Water Tested as Soil Conditioner / Fertilizer

Thank You

td@ferrate-solutions.com

And Address of the